科学的アプローチをデザインする①

札幌啓成卒業生の課題研究から学ぶ

探究の過程

⑧次なる課題の設定

⑤整理·分析

⑥まとめ・表現

⑦振り返り・考えの更新

④情報の収集 (実験・調査)

③課題の設定

②不思議の発見

①身の回りに アンテナを

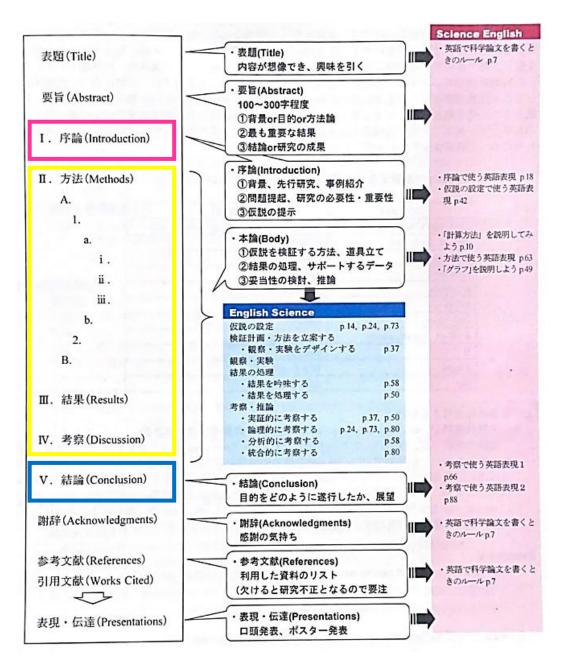
探究の過程

⑧次なる課題の設定

5整理·分析

⑥まとめ・表現

⑦振り返り・ 考えの更新


④情報の収集 (実験・調査)

③課題の設定

②不思議の発見

①身の回りに アンテナを

科学論文の構成

表題(Title) 要旨(Abstract)

序論 I. 序論 (Introduction)

I. 方法 (Methods)

本論 II. 若果 (Results)

IV. 考察 (Discussion)

結論 V. 結論 (Conclusion)

謝辞 (Acknowledgments)

参考文献(References) 引用文献(Words Cited)

科学論文の構成

目的	戦略 (仮説)
30 cm の段差を乗り越	
えたい。お掃除ロボッ	り、2台組合せて踏破
トを作りたい。	力を改善する。

道具立て(方法)	結果
2 台組み合わせることで	段差乗り越えは目標を達成し
30cm 段差乗り越えに成功し	た。お掃除ロボットは紙ゴミを
た。紙ゴミを拾うロボット	拾えたがルンバを超える踏破
を製作した。	力は得られなかった。

解釈	結論
踏破力については目	踏破力を保持したま
標クリアした。ルンバ	まお掃除機能を追加
を超えることはでき	することは出来なか
なかった。	った。

表題(Title) 要旨(Abstract)

序論

I. 序論(Introduction)

II. 方法(Methods)

Ⅲ. 結果 (Results)

IV. 考察(Discussion)

V. 結論 (Conclusion)

謝辞(Acknowledgments)

参考文献(References) 引用文献(Words Cited)

科学論文の構成

目的:何を知りたいのか。

戦略(仮説):確かめようとしたことは何か。

道具立て(方法):どのようなことを行ったか。

結果:その結果はどうだったか。

解釈(考察):その結果は何を意味するのか。

結論:何がわかったか。

札幌啓成卒業生の課題研究から学ぶ

この部分をはっきり明確に

目的:何を知りたいのか。

戦略(仮説):確かめようとしたことは何か。

道具立て(方法):どのようなことを行ったか。

結果:その結果はどうだったか。

解釈(考察):その結果は何を意味するのか。

結論:何がわかったか。

札幌啓成卒業生の課題研究から学ぶ

この部分をはっきり明確に

目的:何を知りたいのか。

戦略(仮説):確かめようとしたことは何か。

道具立て(方法):どのようなことを行ったか。

結果:その結果はどうだったか。

解釈(考察):その結果は何を意味するのか。

結論:何がわかったか。

この部分をはっきり明確に十自分たちならこうする (研究内容や論文の改善点)

札幌啓成卒業生の課題研究から学ぶ

```
13:25 本時の目標
```

```
13:30 個人での読み取り①
```

13:45 班でのまとめ①

14:05 個人での読み取り②

14:15 休み時間

14:25 班でのまとめ②

15:40 全体共有

15:00 本時のまとめ

科学的アプローチとは?

- ●「命題」の真偽を論証する作業の積み重ね
 - ・命題:正しいか誤りかを問いうる分 水がないと人は生きられない⇒命題 明日天気になれ⇒命題ではない
 - ある命題が正しいことを論証する
 - ある命題が誤りであることを論証する
- ●基本構成は、背景→目的→(戦略→道具立て→ 結果 →解釈)×数セット→結論
- ●目的と結論は1対1対応していること

基本構成

数セット

●背景

●目的

●戦略

(仮説)

●道具立て (方法)

●結果

●解釈(考察)

●結論

なぜその研究をしようと<mark>ここが研究の肝</mark>

何を知りたいのか

そのために真偽を論証すべき命題は何か

真偽を論証するために何を示せばよいか

示された結果はどうだったか その結果は何を意味するのか

何がわかったか

基本構成科学論文が認められるまで

- ●投稿→査読→コメント・改訂→掲載→追試
- ●査読者も雑誌の編集部会もその論文の正しさま では保証しない
 - 内容に科学的な価値があるか否か
 - 論旨が正しいか否か(科学的アプローチが適切にデザインされているか)
 - ・追試・再現実験の実施に必要な情報が記述されているか否か
- ●追試は雑誌掲載後に世界中の追随研究者により 行われる

例えばイオンクラフト

- ●目的
- 戦略(仮説)
- ●道具立て(方法)
- ●結果
- 解釈(考察)
- ●結論

イオンクラフトを実現する 高電圧発生装置を2種類用意し、アルミ箔 の形状と面積を変化させてみた

条件ごとにイオン風の流速と浮力を得た 浮力はアルミ箔の面積に比例する

条件ごとにイオン風の流速と浮力を計測

イオンクラフトの実現に成功、浮力はアルミ箔の面積に比例

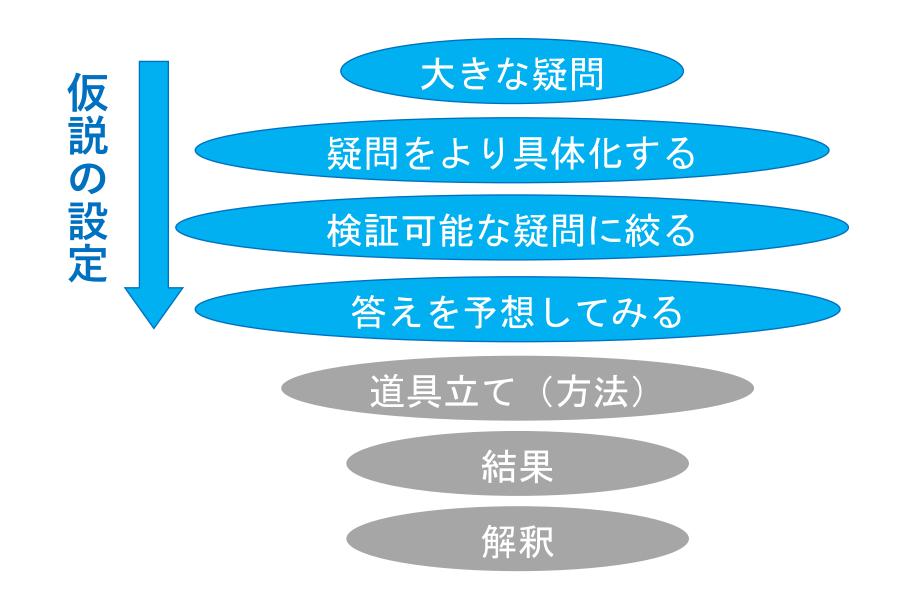
例えばイオンクラフト

- ●目的
- ●戦略

(仮説)

- ●道具立て (方法)
- ●結果

- 解釈(考察)
- ●結論


イオンクラフトの浮力を大きくしたい イオン風を大きくするには、アルミ箔の 面積を増やせば良い

アルミ箔の面積とイオン風の流速の関係を実験的に調べる

アルミ箔の面積が大きいとイオン風の流速 も大きい

イオン風の流速はアルミ箔の面積に従って 増大する

仮説は真である

問い

アリはどうやってエサを探すのか?

具体化

検証 可能

答えを予想

アリはどうやってエサを探すのか?

- 具体化・偶然に見つけたエサの場所を記憶しているのか。
 - 句いによって、エサを探すのか。
 - 仲間にエサの場所を教えてもらっているのか。

可能

答えを

問い

アリはどうやってエサを探すのか?

具体化

- ・偶然に見つけたエサの場所を記憶しているのか。
- 匂いによって、エサを探すのか。
- ・仲間にエサの場所を教えてもらっているのか。

検証 可能

答えを予想

問い

アリはどうやってエサを探すのか?

具体化

- ・偶然に見つけたエサの場所を記憶しているのか。
- ・匂いによって、エサを探すのか。
- ・仲間にエサの場所を教えてもらっているのか。

検証 可能

・アリは甘い匂いでエサを判断する。

答えを予想

問い

アリはどうやってエサを探すのか?

具体化

- ・偶然に見つけたエサの場所を記憶しているのか。
- 匂いによって、エサを探すのか。
- ・仲間にエサの場所を教えてもらっているのか。

検証 可能

・アリは甘い匂いでエサを判断する。

答えを予想

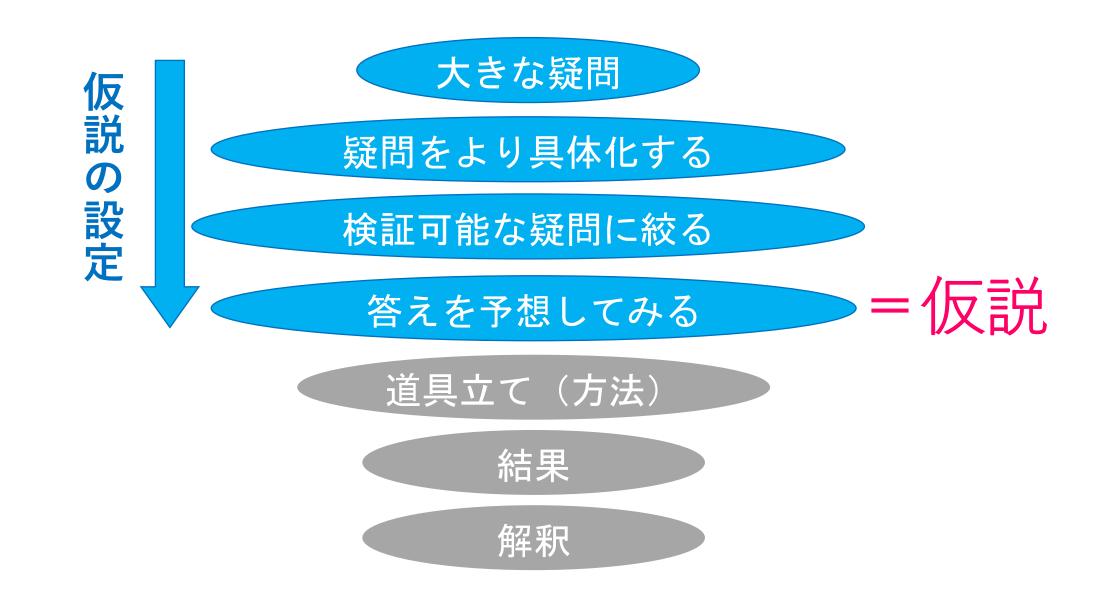
・アリは視覚情報なしに甘い匂いに誘引される。

問い

アリはどうやってエサを探すのか?

具体化

- ・偶然に見つけたエサの場所を記憶しているのか。
- ・匂いによって、エサを探すのか。
- ・仲間にエサの場所を教えてもらっているのか。


検証 可能

・アリは甘い匂いでエサを判断する。

答えを 予想

・アリは視覚情報なしに甘い匂いに誘引される。

- 仮説

